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Abstract

In this paper we attempt to demonstrate how research in
the field of automatic image captioning has grown tremen-
dously. We show this through the implementation and anal-
ysis of three seq2seq models: Merge Network, Encoder
/ Decoder with Attention, and the state-of-the-art OFA
model. Quantitative and qualitative results confirm our hy-
pothesis and show clearly just how far this area of study has
come.

1. Introduction/Background/Motivation

Modern research in Artificial Intelligence is beginning
to converge upon language models as a strong candidate
for generalization across a wide variety of tasks. Research
organizations like Google and OpenAl are beginning to
see language models achieve impressive results across an
assortment of A.L. applications even without task-specific
training data [16]. The bedrock to many of these language
models is the Sequence-to-sequence architecture (seq2seq).

In seq2seq models, inputs to the model are sequences
of data and outputs from the model are also sequences of
data. Often structured so that one component of the model
encodes an input sequence to a vector of fixed dimensional-
ity while another component decodes an unfixed target se-
quence of data output [I1].

So what makes seq2seq models so special? We’ve seen
in the past Deep Neural Networks (DNNs) have shown
strong performance in the areas of language and speech [9].
Despite this strong performance, DNNs take as input a vec-
tor of fixed dimensionality and output a vector of fixed di-
mensions. A significant limitation, given that many general
tasks require outputs expressed as sequences of unknown
lengths. Seq2seq models overcome this limitation by us-
ing Recurrent Neural Networks (RNNs) to map temporal
dependencies of input sequences to output sequences of un-

known length [11].

Encoding a vector of fixed dimensionality to a decoded
sequence of unknown length provides an expressiveness
that a fixed output can not. This is why the fixed internal
representation produced by the encoder can be a combi-
nation of many pre-trained neural network components al-
lowing seq2seq models to generalize in some cases to even
multi-modal tasks [25].

The success of seq2seq models has been the inspiration
for this work; our goal is to achieve a deeper understand-
ing of seq2seq models. We aim to highlight the important
role Encoder / Decoder components have in contributing to
the successful results of seq2seq architecture. This work
could be relevant to any domain which requires Al models
to possess a many-to-many relationship between model in-
put and model output. Our aspirations include a detailed
comparison of baseline seq2seq approaches, extension to
include large pre-trained models, transformer based Atten-
tion, as well as a thorough comparison with state-of-the-art
approaches. We include experience, report of problems, and
pitfalls that occurred while accomplishing this research, ei-
ther due to time or implementation details.

We review the performance of seq2seq models in solv-
ing the complex visual linguistic task of automatic image
caption generation. The task of taking an input image and
outputting a general description is a difficult one to solve.
In addition to classifying types of objects located within the
image, a learning model must provide a description of re-
lations between objects in the image. Moreover this com-
bined visual linguistic knowledge must be expressed in an
English sentence of unknown length.

We analyse three increasingly performant versions of
seq2seq models and their performance on the task of auto-
matic image caption generation. A simple merging Encoder
/ Decoder seq2seq model and another Encoder / Decoder
seq2seq model with Attention are compared to a more com-
plex modern state-of-the-art, multi-modal, massively pre-



trained seq2seq model. The first two Encoder / Decoder
models are trained using the Flickr8k[12] data set consist-
ing of eight thousand images each paired with five different
captions. The captions provide clear descriptions of the en-
tities and events occurring in their respective images. On the
image caption generation task we obtain BLEU[ 8] score
results for two models and compare these results to that of
arecent state of the art multi-modal seq2seq model One For
ALL (OFA) [25].

Our contributions are as follows. First, we review two
common versions of the seq2seq model architectures. That
is, the merging Encoder / Decoder and Attention based En-
coder / Decoder. With this we highlight the importance pre-
trained layers and Attention based components have on the
final caption BLEUJ | 8] score results. Finally, to further in-
vestigate how these seq2seq components have contributed
to modern advances we compare these results to the state
art seq2seq model OFA[25].

2. Approach
2.1. Data

Merge and Attention based seq2seq model training for
the target automatic image caption generation task was
completed using the Flickr8k image caption data set first
introduced by Hodosh et al [10]. Flick8k is a manageable
dataset of eight thousand images each having five text based
English descriptions. All images were manually selected to
contain a variety of scenes and situations. Every text de-
scription gives a summery of the objects and events taking
place within the image. By associating each image with
multiple descriptions, the Flickr8k dataset captures some of
the variability in human generated photo captions. More-
over, the manageable size of the Flickr8k dataset allows all
models to be tested using a single GPU during training.

2.2. Merge Network

When it comes to image caption generation, there are
several different approaches that one could take. One of
the most common choices is an Encoder / Decoder archi-
tecture. A typical Encoder / Decoder model uses a Recur-
rent Neural Network (RNN) to encode the input data that
will later be decoded for the model’s output. For image
caption generation, the model is concerned with both lin-
guistic information and image features. These two pieces
of information, however, can be combined either through
‘injecting’ or ‘merging’ them within the model [15]. In-
jecting the image data into the model simply means that the
image data will be passed through the RNN alongside the
linguistic data to be encoded together. While this will work
effectively, it will result in a more complex RNN whose
hidden state size will be very large [15]. An alternative is to
encode the image data separately and then combine it with

the encoded text data from the RNN. Encoding the image
and linguistic data separately allows the RNN to only have
to process the text data while another pre-trained model ex-
tracts image features in a separate step. The encoded data
will later be combined together through either concatena-
tion, multiplication, or addition [2]. The combined encoded
data can then be processed by a simple decoder. This effec-
tively produces a model that given a set of image features
and a starting sequence can predict each next-word in the
output caption sequence until a full caption is derived.

2.2.1 Architecture and Implementation

The Merge Network model architecture consists of two sep-
arate models that each encode their own respective sets of
input data that is later combined and passed through a de-
coder as seen in Fig. 2. One of these models is an RNN
that consists of an embedding layer following by an LSTM
layer. It takes in the linguistic data as input. The other is
a CNN that takes the image data as input. While RNNs
are typically thought of as being generative, the RNN in
this case is purely focusing on encoding word embeddings
and never actually sees the image features [22]. The images
are passed through a CNN to extract the individual features
from within. The encoded output from these two models
are then merged together before passing through a decoder.

When it comes to combining the image features with the
output from the RNN, adding has proven to be the most
effective [22]. It is in this ‘merge’ layer that the generation
process happens. Once the two encoded sets of data are
merged together, they are then passed through a series of
linear layers in order to get a probability distribution for the
available words in the defined vocabulary. This distribution
is passed through a SoftMax layer that will result in the final
prediction for the next word in the sequence.

To facilitate controlled experiments and analysis, the
Merge Network was implemented using the open source
machine learning platform TensorFlow alongside the Keras
deep learning framework [6]. The Merge Network im-
plementation was directly based upon the original merge-
model described by Mark Tanti et el. in their paper [22].
Further implementation guidance was received from Jason
Brownlee and the Machine Learning Mastery Blog [2]
along with his Keras guide [4]. Merge Network testing
included the large pre-trained Keras models VGG16, In-
ceptionV3, and ResNet152V2 for visual components. Tex-
tual components of the model were tested using Keras word
embedding layers trained directly on the captions from the
Flickr8K[12] data set and compared with large pre-trained
word embeddings, GLOVE, created by Jeffery Pennington
and the Stanford Computer Science department [19].

For our experimentation, there were a few optimizations
that were made to increase the performance of the model



and lower the time needed to train. The first optimization
was in preparing the photo data. In our implementation, a
pre-trained model was utilized for identifying the content
within the image and generating the corresponding photo
“features”. To do this, the last layer of the pre-trained model
was stripped away leaving behind the raw weights right be-
fore its classification layer. The Flickr8K [12] images were
then resized to match the corresponding pre-trained model
and then passed through, and their features were captured.
These features were stored within a pickle file and refer-
enced later in the training phase. While this step could have
been implemented as simply another step within the over-
all model architecture, by performing this step once prior
to training we were able to remove the redundant step and
speed up train time for our model.

The second optimization was for the Flickr8K [12]
dataset’s text descriptions. This time we focused on clean-
ing up the text rather than extracting information. For this,
each text description was processed to ensure that all let-
ters were lowercase, all punctuation was removed, all words
with containing only one letter or less were removed, and
all words containing numbers were removed. These final
descriptions were then stored in a text file and referenced
later in the training phase. This helps reduce the size of
the target vocabulary which will, in turn, reduce the mem-
ory size required to train our model along with speeding up
the training process. Essentially, this reduces the size and
complexity of the model.

In order to execute our experiments for our Merge Net-
work implementation in an efficient and timely manner, we
utilized Google Colab alongside our local GPU.

For more information on the training process see B.0.1
in the appendix.

2.3. Encoder / Decoder with Attention

Improving upon the elementary Merge network is the
Seq2Seq Encoder / Decoder Network model with Attention.
In this structure, the responsibility for image captioning is
designated to two main components; the encoder and de-
coder. The encoder processes and embeds raw images using
a pre-trained CNN architecture while the decoder bares the
responsibility to describe the output of the encoder with the
linguistic data using the proposed salient features from the
Attention Network through a RNN. This model architecture
evolved from models like the Merge Network by modulariz-
ing responsibilities into separate networks components and
leveraging the power of the Attention Mechanism. Atten-
tion is a mechanism which began gaining prominence in the
year 2000, and has since been widely used to improve the
performance of language translation and image captioning
[17]. It has proven to help many different models achieve
SOTA performances as evident in the “Show, Attend and
Tell” paper [27]. This portion of this paper is intended to

demonstrate how the Seq2Seq model improved with adapt-
ing proven mechanisms such as Attention.

2.3.1 Architecture and Implementation

The Encoder / Decoder model is a two part network archi-
tecture with each part being their own separate networks.
The encoder network is largely a pretrained CNN which
takes images as raw inputs and encodes them into smaller
data representations. An Average Pool (Adaptive) layer is
added to the end of the CNN to normalize the output of the
encoder network. The output of the encoder is then fed into
the decoder network.

The Decoder Network is the main component which
specifically encapsulates the image-captioning downstream
task. In addition to the Attention Network and embedding
layers for linguistic processing, an LSTM layer is included
for propagating relevant information as the process moves
further in the sequence. The input to the Decoder Network
is the encoded captions and the length for each caption.
Within the decoder, the Attention Network is invoked and
weights are learned and used during next word predictions
[25].

After each step of the decoding process Beam Search is
used to determine the best sequence of words that describes
the image; we experimented with varying values for k to
gain a better understanding of Beam Search.

To explore, experiment, and evaluate the effects of the
Attention mechanism in a Seq2Seq model architecture we
employed the work demonstrated in the “Show, Attend and
Tell” paper [27]. We endeavored to implement and cus-
tomize the model architecture presented in the paper to per-
form similar experiments as performed in the Merge Net-
work model for comparison analysis. Our implementation
guidance was received from Sagar Vinodababu in his im-
age captioning tutorial [23]. The testing and experimen-
tation for the Encoder / Decoder model also included the
same large pre-trained CNN models, however, these are
provided through the Pytorch Model Zoo[ |]. We primarily
used Google Colab for our efforts to explore the Encoder /
Decoder model with Attention. The resource used for the
Encoder / Decoder implementation is the open-source code
provided in [23], however, we customized it to achieve our
experimentation goals.

As a normalization technique, the Flicker8k [12] dataset
was split into predefined sets (train, validation, test) us-
ing the Andrej Karpathy’s splits configurations [13]. Us-
ing these splits, the images and captions are transformed
into their data representation using a word_map for the in-
dex of the captioning words within the corpus. We limited
five captions for each image. For each image and caption,
the data is normalized into two json formatted files and one
HDFS5 formatted file for the captions, caption lengths, and



the images respectively.

The encoder component is customized to support the
three pre-trained CNN architectures. A passed-in parameter
instructs the model of which CNN to execute. Each CNN
architecture was inspected for their expected inputs and out-
put dimensions for proper connections between layers and
blocks. Since the last few layers of each CNN architecture
are used for classification, they were removed to retain the
raw image receptive fields. An additional layer, Average
Pool (Adaptive), is appended to the network for resizing the
output of the encoder network [23].

The output of the encoder network, the encoded image, is
passed into the decoder component along with the encoded
captions and lengths. A distinction from the Merge Net-
work is that the Encoder / Decoder with Attention model is
not using a pre-trained word-embedding, however, the op-
tion is open to do so. In the decoder component, all weights
are initialized uniformly. During the decoding sequential
process, at each time step, the Attention Network is used to
provide a weighted encoding of the image. This weighted
image encoding is concatenated with the word embeddings
and both are decoded by the LSTM network. Dropout is
used to regularize the output from the LSTM network be-
fore receiving the next word prediction from the final fully
connected layer. Upon the completion of the entire se-
quence, extra paddings are removed and CrossEntropyLoss
is used as the loss function. All the weights in the decoder
component are adjusted through backpropagation using the
Adam Optimizer; these weights include word embedding,
Attention Network, layers to support the LSTM network,
and the output layer.

The version of the Attention mechanism adopted is the
soft Attention. It may provide higher weights for more than
one region of the image, however, all the weights sum up to
one [23]. The output for training, validation and evaluation
are measured using BLEU scoring metric (BLEU-1, BLEU-
2, BLEU-3 and BLEU-4).

For more information on the training process see B.0.2
in the appendix.

2.4. OFA

For our culminating approach, we selected the OFA (One
For All) architecture [25]. The OFA architecture is a multi-
modal, pre-trained model which achieves state-of-the-art
performance on the COCO Captions dataset [5] for Image
Captioning tasks.

OFA is a pre-trained sequence to sequence transformer
model which has learned on a variety of pre-training tasks,
such as visual grounding, image-text matching, and others.
The heart of OFA is that it has been trained under differ-
ent modalities, including Vision, Language, and Vision +
Language. The multi-modal pre-training of the OFA model
allows for the architecture to have great generalizability; in-

cluding to unseen tasks and tasks which combine Vision and
Language. The multi-modal nature of OFA also prevents
the need for additional task specific, learnable modules.

2.4.1 Architecture and Implementation

The OFA architecture uses the Transformer as the underly-
ing architecture mechanism; although the transformer took
its foothold in the Natural Language Processing domain, it
has also recently been shown that can perform very well
in the Computer Vision domain [8]. The architecture con-
sists of multiple transformer Encoder / Decoder layers, with
other mechanisms that have been used with transformers
prior (normalization and self-attention). This transformer
architecture is jointly pre-trained on a large combined im-
age and text dataset [25]. Image patches extracted from the
original image, as well as object detection information are
combined with the corresponding language information in
order to embed the image and textual information into a
combined feature space.

The open-source OFA implementation [26] is used for
our experiments. We used the OFA-Large pre-trained
checkpoint, (approximately 470 million parameters) with
the fine-tuning checkpoint for image captioning on COCO.
Additional custom code was written to generate inference
results such as BLEU scores [ 18] on our test set (which is
common to all three of our experimenting architectures), as
well as for generating captions with custom images.

3. Experiments and Results

We performed an extensive set of experiments to assess
the effectiveness of Merge, Attention, and OFA models on
the task of automatic photo caption generation. Each model
was tested using several metrics including qualitative and
quantitative techniques. In addition, multiple pre-trained
visual and linguistic architecture components were tested in
combination with Merge and Attention based seq2seq mod-
els to assess the effects of large scale, pre-trained compo-
nents have on task performance.

3.1. Scoring and Metrics

For quantitative analysis we use the Bilingual Evaluation
Understudy metric (BLEU)[ 18] score across all three mod-
els for evaluation of the performance of each architecture.
We use 1-gram, 2-gram, 3-gram, and 4-gram metrics, each
with uniform weighting. This allows us to measure perfor-
mance consistently and accurately across all three models.

To gain a qualitative understanding of performance for
the Merge, Attention and OFA models, a human evaluation
metric was collected for each model. To collect this metric,
13 custom images were selected. Generated captions from
each model resulting from the randomly selected images
were used during a human graded scoring process. Four
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Figure 1: Merge and Attention Networks Loss (Left), Caption Comparison (Right)

Model ‘ Merge-VGG ‘ Merge-InceptionV3 ‘ Merge-ResNet ‘ Attention-VGG ‘ Attention-InceptionV3 ‘ Attention-ResNet ‘ OFA ‘

BLEU1 0.5294 0.5191 0.5264
BLEU2 0.2871 0.2715 0.2840
BLEU3 0.1948 0.1832 0.1964
BLEU4 0.0846 0.0827 0.0827

0.6401 0.5843 0.6400 0.5978
0.4591 0.3954 0.4605 0.4107
0.3606 0.2985 0.3601 0.3097
0.2245 0.1729 0.2202 0.1765

Table 1: BLEU Scores - Merge Network, E/D-Attention , OFA

caption graders were asked to score each generated caption
with a rating of 1-5. Final average score per model was col-
lected for thorough qualitative analysis and can be seen in
Fig. 5.

3.2. Experiment Details

To assess differences in large scale, pre-trained visual
components Merge and Attention based networks were
trained in combination with VGG, ResNet, and Inception
V3. BLEU and Qualitative scores were collected for all
model comparisons and compared with the state-of-the-art
OFA model. Additionally, the effects of large, pre-trained
word embeddings were investigated on the more elemen-
tary Merge Network. Pre-trained word embeddings showed
no performance improvements. However, training speeds
increased by a factor of 2 when using pre-trained linguistic
layers.

3.3. Results and Analysis

We report our main results on Flickr8k in Fig. 1 and
Table 2. Results show the Attention model using the pre-
trained VGG component is a able to achieve a BLEU-4
score of 0.22 on par with current state-of-the-art approaches
for the Flick8k dataset [7]. Moreover, this is similar to av-
erage human BLEU-4 scores of .22 collected on other large
datasets [24].

Human performance level BLEU-4 scores do not tell a
complete picture. Some captions produced by the Atten-
tion model show clear errors that humans would most likely
not make. This provides some indication that improve-
ments can be made over the BLEU score metric. Moreover,
qualitative human ratings show the transformer based OFA
model produces higher quality image captions for Flickr8k
test images (see Fig. 5). The average OFA score is 4.92,

average Encoder/Decoder with Attention score is 2.35, and
average Merge score is 1.5; this clearly reflects our hypoth-
esized score progression over the increasingly performant
model architectures.

Results in Fig. 1 left show the learning curve characteris-
tics during training for Merge and Attention models. Train-
ing details provided here show a clear over fitting that is oc-
curring for both models. The training set size of Flickr8k al-
lows these deeper models to easily overfit the training data.
Interestingly adding Attention to the Encoder / Decoder ar-
chitecture reduces overfitting by small amounts even on this
smaller training data size. Regardless, both models fit the
training data in a small number of training epochs taking an
average time of 30 minutes on a single GPU. Larger training
data sizes would most likely help both models generalize
more and reduce overfitting.

Fig. 1 right compares a difficult photo caption, this
shows the impressive performance provided by transformer
based Attention. Both simple Merge, and Attention based
models have a difficult time generating context of the image
properly and incorrectly describe the dog in the picture [21].
Only the OFA model is able to properly describe context by
noting the dog is dressed up as a tiger. This underscores the
strength of adding transformer based self-attention to the
seq2seq architecture.

Collectively the results in these experiments show a clear
progression from an elementary Merge Encoder / Decoder
to an Attention based Encoder / Decoder and finally a Trans-
former based Encoder / Decoder. This highlights the ex-
pressiveness of the seq2seq architecture. Pre-trained com-
ponents can be used with Encoder/Decoder modules to fa-
cilitate complex artificial intelligence tasks. Furthermore,
adding Attention to seq2seq architecture improves model
performance by more than a factor of two. This shows some



limitation of the recurrent architecture. Without Attention,
information found early on in large sequences is lost thus
degrading model performance. Adding Attention allows the
model to retain more information. This effect is increased
with the more advanced transformer based Attention of the
SOTA OFA model.

4. Experience
4.1. Pitfalls and Challenges

As with any project, we expected to run into challenges
throughout our experimentation. One of the main chal-
lenges that we faced was finding a state-of-the-art (SOTA)
model that was tailored to image caption generation tasks.
We originally planned on using the VILBERT[ 4] model
however we were unable to find an implementation that
we could successfully get working. We then faced chal-
lenges trying to find an alternative model. While there are
many SOTA models, few of them appeared to be specifi-
cally for image caption generation. We finally settled on
using OFA[26] for this part of our experimentation.

Another issue that we ran into was with the implemen-
tation of the Merge Network model. We first attempted to
recreate Jason Brownlee’s Keras implementation[4] using
Pytorch. We were able to create a model that did run and
appear to train successfully, however, when we tested the
quality of its generated captions, they were very poor. After
thorough testing and debugging of our model, we were not
able to discern the cause of this. Due to time constraints,
we then pivoted our approach to adapting the Keras imple-
mentation directly as opposed to converting it to Pytorch.

Code execution times also proved to be a major issue for
various parts of our project. For example, without special
configuration, TensorFlow would not work with our GPUs.
After significant amount of trial and error, we were able to
successfully get our model training on our local GPU. In
the meantime, we were able to get around this by training
our models on Google Colab. However, we had to change
our data loading step so that it did not attempt to load all
of the data into memory at one time because it would cause
the Colab session to break due to running out of allocated
memory.

Regarding the Encoder / Decoder with Attention, We did
anticipate that it may not work as described, therefore as-
signed two team members to collaborate and tried to get
it working. We were cautiously optimistic since the code
presented some similarity to what we have been exposed
to from the lesson of the CS7643 class, we were somewhat
certain that we would be able to get it to run. We discovered
that, due to some library requirements, it wouldn’t work on
Microsoft Windows OS. After resolving some other bugs,
we finally were able to get it to run from a Linux environ-
ment as well as Google Colab.

Finally, another challenge we experienced related to the
BLEU scores we achieved between the three models. We
expected that the BLEU scores would grow increasingly
from Merge — Encoder / Decoder — OFA, but what we
found were resulting scores of Merge — OFA — Encoder /
Decoder (see Table 2). We also found that the captions gen-
erated by the OFA model were qualitatively the best of all
three models, especially when testing with samples outside
our dataset wholly.

We hypothesize that the source of this problem is either
BLEU scores (and N-gram metrics in general) are not so-
phisticated enough compared to more modern evaluation
metrics [20]; or it is possible that there is a source of data
leakage which is causing increased performance on our test
set within the Encoder / Decoder model. Further analysis
and experimentation could reveal definitively the source of
this issue.

4.2. Changes in Approach

Compared to our original scope for this project, we did
not have to change our planned approach very much. The
most drastic change was with the SOTA model that we were
planning on using for comparison. Due to the issues men-
tioned in the above section, we had to shift our focus from
the VILBERT[14] model to the OFA[25] model. This al-
lowed us to move forward with our experimentation while
not compromising on the quality of our SOTA model nor
the scope of our analysis. Additionally, we had originally
planned on developing the Merge Network model and the
Encoder / Decoder with Attention models ourselves. How-
ever, due to time constraints and overall complexity of the
models themselves, we opted to use more out-of-the-box so-
lutions that we were then able to tailor to our specific needs

4.3. Project Success

Despite the few changes in our approach due to unfore-
seen complications, we were still able to deliver exactly
what we proposed for this project. We successfully created,
trained, and experimented with a Merge Network model,
Encoder / Decoder with Attention model, and the SOTA
OFA[25] multi-modal, pre-trained model. We were also
able to experiment with various optimizations and improve-
ments to these models as well. The overall goal of our
project was to compare these models to show how image
caption generation has improved over time. Through our
experimentation and analysis of BLEU[ 18] scores and the
overall quality of the output captions, we were able to not
only quantify this improvement but also qualify our original
hypothesis.

5. Work Division

Summary of contributions are provided in Table 3.
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Figure 4: OFA Architecture

B. Training
B.0.1 Merge Network

In order to train our Merge Network model, we had to first
load in the saved image feature data along with the cleaned
image descriptions. This data was compiled and split into
our training and validation datasets. Keys that map each
input image to its corresponding data are generated using
the input image’s file name. Before the descriptions can be
passed into the model for training, they first must be con-
verted to an integer representation by encoding the words
within the vocabulary. This was done by using a tokenizer

to learn the mapping between words and their correspond-
ing integer keys.

This model works by predicting captions one word at a
time. This means that given an input image and its cur-
rently predicted caption, the model will keep predicting the
next word of the sentence until it thinks that the caption is
complete. Because of this, we must train the model in the
same manner. In order to achieve that, each description is
broken into its individual words that are then encoded using
the before-mentioned tokenizer. These are used to create an
array of sequences for each image — description pair. These
sequences are then compiled together and used for generat-
ing the training and validation datasets.

Since we are dealing with large amounts of data, train-
ing is very process-intensive and requires large amounts of
memory to store all the image features and corresponding
descriptions. In order to help alleviate this issue, we imple-
mented a mechanism called Progressive Loading[3]. This
concept utilizes a data generator that will yield a smaller
batch of data each time it is called that will eventually it-
erate through the entire dataset. You can think of this as
generating all the data for a given set of images as opposed
to loading all the data for all the images. This requires sig-
nificantly less memory since we are no longer loading all
the information at one time, rather small chucks as needed.

B.0.2 Encoder / Decoder Attention

In order to train our Encoder / Decoder with Attention
model, we used similar techniques used in the Merge Net-
work for data normalization but with the Karpathy’s splits
configurations to derive the train, validation, and test sets.
The training process is set up to execute for a maximum
of 120 epochs with early stopping. The early stopping is
triggered after the performance of 10 subsequent epochs di-
verge from the best using their BLEU-4 score. The decoder
learning rate is initialized at 4e-4 and starts to decay after
eight epochs with unimproved performance. During train-
ing, the best and last checkpoints of the learned parameters
are stored for evaluation and recovery. Loss curves are ob-
served for debugging and tuning adjustments, see Figures
1.

C. Example Captions
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Merge: 1.0 Merge: 1.0 Merge: 2.0 Merge: 1.75 Merge: 2.0 Merge: 2.25 Merge: 2.0
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Merge: 1.0 Merge: 2.5 Merge: 1.0 Merge: 1.0 Merge: 1.0 Merge: 1.0
E/D w/ Attn: 1.25 E/D w/ Attn: 4.0 E/D w/ Attn: 1.0 E/D w/ Attn: 2.0 E/D w/ Attn: 2.0 E/D w/ Attn: 1.0
OFA: 4.75 OFA: 5.0 OFA: 5.0 OFA: 5.0 OFA: 5.0 OFA: 4.5
Figure 5: Qualitative Assessment of Captions (Averaged Across Four Reviewers)
‘ Picture ‘ Merge Attention OFA
(a) two people are walking on the beach a brown dog is eating a <unk> a cheeseburger with cheese on a white plate
(b) two girls are playing on trampoline a small brown and white dog is laying on the | a cat sitting at a table looking at a plate of
ground with its mouth open biscuits
(c) two children are playing in the grass a young boy sliding down a blue slide a little boy is going down a blue slide
(d) dog is running through the grass a black dog runs through a grassy field a black cow standing in a field of grass
(e) dog is running through the grass a black and white dog with a black collar is | a black and white dog laying on a bed
laying on its hind legs
(f) two dogs are running through the grass ablack and brown dog is running through the | a dog sitting on the grass with a flower in its
grass head
(2) dog is running through the grass two dogs are playing with a toy in abackyard | two puppies sitting on a table next to a
stuffed animal
(h) man in red shirt is standing on the street a person is standing in front of a large build- | a large boat is displayed in a display case in
ing a mall
(1) man is black shirt is standing on the sidewalk | a group of men play in a race aman in an orange shirt is running a race
G) man in red shirt is standing on the beach a man in a yellow shirt is walking on a side- | an orange tree with oranges on it next to a
walk fence
(k) man in black shirt is standing in front of | a small dog is laying in the sand a cat sleeping in a cat house next to a towel
crowd
(0] man in red shirt is standing on the street a group of people are standing in front of a | an aerial view of a large room filled with ta-
crowd bles with vendors and people walking around
(m) man in red shirt is standing on the street a girl in a green shirt is sitting on a skate- | a statue of a peacock sitting on a bench
board

Table 2: Generated Captions




’ Student Name

Contributed Aspects

Details

Clivens LaGuerre

Jerrod Pelley

Kevin Ayers

Jared Benedict

Implementation, Analysis, and Writing

Implementation, Analysis, and Writing

Implementation, Analysis, and Writing

Implementation, Analysis, and Writing

Implemented and trained the Encoder / Decoder with At-
tention model. Performed qualitative and quantitative
analysis. Contributed to writing paper.

Implemented and trained the Encoder / Decoder with At-
tention model. Setup OFA model. Performed qualitative
and quantitative analysis. Contributed to writing paper.
Implemented and trained the Merge Encoder / Decoder
model. Performed qualitative and quantitative analysis.
Contributed to writing paper.

Implemented and trained the Merge Encoder / Decoder
model. Performed qualitative and quantitative analysis.
Contributed to writing paper.

Table 3: Contributions of team members.




